

TLDWorkerBee

Team: Austen Christensen, Morgan Lovato, Wei Song

Sponsor: Harlan Mitchell - Honeywell
Mentor: Austin Sanders

Technological Feasibility Analysis

November 7, 2018

1

Table of Contents
1. Introduction 3

2. Challenges Overview 3

3. Cloud 4
3.1. Overview 4
3.2. Alternatives 7
3.3. Chosen approach 8
3.4. Proving feasibility 8

4. Database 9
4.1. Overview 9
4.2. Alternatives 11
4.3. Chosen approach 11
4.4. Proving feasibility 12

5. GUI 12
5.1. Overview 12
5.2. Alternatives 15
5.3. Chosen approach 16
5.4. Proving feasibility 17

6. Protocol 17
6.1. Overview 17
6.2. Alternatives 18
6.3. Chosen approach 19
6.4. Proving feasibility 19

7. Integration 19
7.1 Transfer TLD data from the Cloud to the GUI 20
7.2 Evaluate and display the data 20

8. Conclusion 21

2

1. Introduction

Planes are one of the most popular ways to travel quickly. They can get from Phoenix to Los
Angeles in a little over an hour. These machines generally have a cruising altitude of 33,000 to
42,000 feet, making it vital to have working engines at all time. Our team is TLD Worker Bee,
and we are working on the project Prototype Time Limited Dispatch (TLD) Application. Our
sponsor is Harlan Mitchell from Honeywell Aerospace, a manufacturer of aircraft engines. The
current way of getting TLD data is to physically connect a computer to the engine computer via
USB and download the data. This can be very cost inefficient because the mechanic has to be
on site to gather the data, then determine what work needs to be done on the engine. They
might not have the parts or tools they need, making the plane stay grounded longer. However,
our sponsor has found a way to wirelessly upload that data from the plane onto a cloud. Our job
is to build a prototype GUI that will quickly and accurately display the data that has been
uploaded to the cloud. This will make it so a mechanic doesn’t have to be physically next to the
plane to diagnose the error codes.

This feasibility analysis is structured to help the team choose a solution to the key technological
challenges of this project. We are identifying possible solutions, researching them, and selecting
a solution based on an analysis of each. We begin by identifying the different technical
challenges we have found for this project. Then, in the subsequent sections, we analyze each
challenge individually; in this individual analysis, we compare three different alternative solutions
to the challenges and choose the best one. We then explain how all of these solution will be
integrated together to help us complete this project.

2. Challenges Overview

Before we dive into the analysis, we must present an overview of our challenges. This project
presents us with four major technological challenges. Our first challenge is finding a way to
replicate the existing cloud environment Honeywell is currently using to store their Time Limited
Dispatch (TLD) data. We need to have our own cloud environment where we can upload TLD
test data for the purpose of our project. This cloud must be able to take in a file of data, make
sure the data does not get compromised, and allow that data to be downloaded into a database.

That brings us to our next challenge: we need a database to store this TLD data once we get it
out of the cloud. There is a possibility that our database must be stored in the cloud as well as
stored on a local host. The cloud version of the database would be used as an “original” while
the local database will be copies of the original. The database must then be viewed in some sort
of GUI.

The GUI for this challenge is another technical challenge we are facing. There are so many
kinds of GUI to display the TLD data, like web app, desktop application, command line, or even

3

readable file, and we need to choose the best way to evaluate and display those TLD data, and
it has to work seemly with the cloud and database we chose.

Since our project will be reliant on the internet, there must be an internet protocol to follow. Our
project will need to be able to connect to a remote server to retrieve data off of the cloud. It
needs to be a reliable transfer of data and the data must be exactly the same as in the cloud, in
order and accurate.

3. Cloud

3.1. Overview

There is already an existing workflow for the basis of this project. TLD data in a file is
uploaded to a cloud, and the data is then displayed in a chosen GUI without any errors
in the data. One technical challenge of this project is simulating or recreating the cloud
environment our sponsor is currently employing. The solution we come up with to
recreate a cloud environment must be able to take in a file of data and make it
downloadable while ensuring the integrity of the data throughout the process.

The issue of needing to use or simulate our own cloud can be solved in various ways.
For businesses, cloud computing allows for convenient access to offsite computing
resources and storage without having the physical infrastructures to facilitate the
necessary computing. For smaller organizations, it may be cheaper to consider
simulating the cloud environment; this is accomplished with a cloud simulator. A cloud
simulator allows for the modeling of different cloud applications and can be an
alternative to making a physical cloud. Some clouds offer processing powers, some
clouds offer storage capabilities, and some clouds offer both. What we need for this
project is a cloud we can upload to and download from that will serve as storage for test
TLD data files. Preferably, this cloud will have support for Python integration and
implementation to allow consistency of the project and provide a free to use solution for
the duration of this project. A possible limitation we may be faced with is the amount of
available storage the solution may offer.

3.2. Alternatives

For this project, our team can either use an existing cloud service or simulate our own.
We will be considering three alternative to this solution: Amazon Web Services, Google
Cloud, and CloudSim. Both Amazon Web Services and Google Cloud are cloud services
and CloudSim is a cloud simulator. Each alternative option will be evaluated against the
following criteria:

● if it meets the goal - we need a solution capable of storage capabilities
● the language - the supported languages may affect the solution’s integration

4

● the cost or availability of the service - we need something free preferably
● available storage - we need a solution capable of storing the necessary data
● community outreach - this helps with getting help and how well maintained the

solution is by the provider

3.2.1. Amazon Web Services

AWS is a cloud services platform with many services and security capabilities. A
few main services offered are computing power, storage options, networking and
databases, content delivery, and other. There are over 50 services available in
total.

The AWS services we are interested in are the Cloud Storage services which are
described as a reliable and secure place to store data. There are four different
AWS Cloud Storage products to choose from, each with their own key
functionalities. Simply defined, each product is:

● Amazon Elastic Block Store (Amazon EBS) – for storing and processing
block data like relational and NoSQL databases and Big Data processing

● Amazon Elastic File System (Amazon EFS) – for storing and sharing data
in scalable file systems

● Amazon Simple Storage Service (Amazon S3) – for storing and accessing
any type of data from any internet location

● Amazon Glacier – for low-cost and long-term archive of data
Based on the needs of this project, we would be using the Amazon S3. It is both
secure and 99.999999999% durable meaning there is an annual average
expected data loss of 0.000000001%. With this product, we can store and
retrieve data in a cloud.

There are many different platforms which AWS can run on including Android,
iOS, Java, PHP, Python, Ruby, and more. The team is hoping to complete this
project using Python as the main language, and there is an AWS SDK for Python
called Boto3. The SDK works with Amazon S3 as well. The team could also
install Python onto the cloud server to run scripts.

AWS offers a Free Tier that includes a 12-month trial of Amazon S3. The trial
includes 5GB of storage, 20,000 Get Requests, and 2,000 Put Requests. 12
months starting now (in November) is more than enough for this service to last
the entirety of this project.

Since the services are provided by Amazon, which is a large company, new
services are quickly built to respond to changing requirements in business, and
there are many strong security features in place for user protection and data
encryption. The AWS cloud itself has a large network of regions that spans the

5

globe; there are 55 Availability Zones in 18 different geographical regions with
three of these zones being in the Northern California region. There are also many
well known companies, such as Spotify and Yelp, that use AWS as well and
many that even use a Free Tier.

One major downside or thing to consider when it comes to using AWS is the
learning curve involved.

3.2.2. Google Cloud Platform

Google Cloud is another secure cloud services platform. It offers services like
computing, AI and machine learning, storage, data analytics, and more.

The Google Cloud services we are interested in are the Cloud Storage services.
The storage services are secure and durable that allows instant access to the
data. This will work for our project as we need to store and access data.

Google Cloud supports such languages as C#, Java, Python, PHP, Ruby, and
more. Our project is hoped to be completed in all Python, and Google Cloud does
have support for Python.

There is a free trial of the Google Cloud Platform services that includes access to
all Google Cloud Platform products and $300 credit to spend over the 12 months
of the free trial. The Always Free usage limits include 5BG of storage a month,
5,000 Class A operations, and 50,000 Class B operations. There are three
categories of operations: Class A, Class B, and free. Class A and B operations
are actions that make changes to or retrieve information in the cloud storage;
they have different rates per 10,000 operations, but the Always Free trial allows a
certain amount of operations to be done for free.

Google is another large company that can offer full support services and has one
of the highest security ratings that can be given. The Google cloud itself has 55
zones in 18 regions around the world regions with three of these zones being in
the Los Angeles region. Many well known companies including Blue Apron and
Johnson & Johnson use Google Cloud services.

One downside to the Google Cloud Platform is the slow pace of improvements
compared to other option being analyzed.

6

3.2.3. CloudSim

CloudSim is a library developed at the University of Melbourne in Australia to
simulate cloud computing. It can simulate data centers, virtual machines,
applications, and more. CloudSim is an open source project that is free to use.

It is possible to use CloudSim to simulate data centers we could use for this
projects purpose of data storage, but it is an extensive process.

Fig. 1. CloudSim Architecture (featured in the article “A Features-based Comparative
Study of the State-of-the-Art Cloud Computing Simulators and Future Directions” in the
International Journal of Advanced Computer Science and Applications)

CloudSim requires a written Java program to compose scenarios and collect
results from the Cloud applications. There is a detailed architecture of CloudSim
pictured above. Each layer of the architectures communicates through message
passing. Data centers are located in the second layer under Cloud Resources.

There are many tutorials, forums, and groups online where one can go to learn,
discuss, and troubleshoot issues to do with CloudSim. From their website, there
is a mailing list to sign up for that serves as a discussion group as well. There is
also documentation for an ioline course on CloudSim, examples, and a
README.

The major downside to CloudSim is there is no GUI.

7

3.3. Chosen approach

Table 1 compares the different chosen cloud models described in this section for
different necessary functions including:

Table 1 - Cloud Comparison

Functions Amazon Web Services Google Cloud CloudSim

Goal (Storage) Met Met Met

Language Many (Python) Many (Python) Java

Cost/Availability Free Tier (1 year) Free Trial (1 year) Open Source

Available Storage 5GB 5GB/month Undetermined

Community Outreach Extensive - Responsive Extensive - Slow Limited

For this project, we will be using Amazon Web Services. We want to stay away from
cloud simulation and use cloud services provided by a company. We chose this solution
because it is the most practical and flexible for our needs. It has a free tier and can also
be implemented in Python which integrates well with the other aspects of our project.
The responsive community makes this choice more attractive than Google Cloud.

3.4. Proving feasibility

The way Amazon S3 stores data is as objects in buckets. Objects are a file and any
metadata for that file and buckets are containers for objects. Uploading a file is how you
store an object in a bucket.

AWS offers a Getting Started Guide for Amazon S3 on their website. The steps are as
follows:

● Sign Up for Amazon S3
● Create a Bucket
● Add an Object to a Bucket
● View an Object
● Move an Object
● Delete an Object and Bucket

I plan on following this guide to learn the basics of how to use Amazon S3. A possible
demo I could develop is how to add and delete a file to a bucket.

8

4. Database

4.1. Overview

This project will require a database to read and store all of the TLD data from the TLD
file. There is a possibility for the database to be in the cloud for testing so the database
platform must work well inside a cloud as well as on a host computer. The fields of the
data will stay consistent from file to file but the data will change.

The issue of needing to use a cloud based database or a local database can be solved
in a few different ways. What we need for this project is a database that will serve as
storage for the TLD data files. There is a possibility that our project will require a cloud
based database for testing. Preferably, this database will have support for Python
integration and implementation to allow consistency of the project and provide a free to
use solution for the duration of this project. A possible limitation we may be faced with is
the amount of available storage the solution may offer as well as how the data is stored.

4.2. Alternatives

For this project, our team can either use a database designed for the cloud and/or a host
computer. We will be considering three alternative to this solution: Amazon Relational
Database Server(RDS), MongoDB, and Apache Cassandra. Both Apache Cassandra
and MongoDB are NoSQL databases and Amazon RDS uses SQL. Each alternative
option will be evaluated against the following criteria:

● if it meets the goal of storing the data correctly
● the supported language
● the cost to use the database and how much we can store
● the type of database
● how the database is scaled

4.2.1. MongoDB

MongoDB is a document-oriented database using JSON like format. The fields
can vary from document to document and data structure can be changed at any
point in time. A few of MongoDB’s main features are Ad hoc queries, indexing,
replication, load balancing, file storage, aggregation, and transactions.

The feature that draws the most attention to MongoDB is how it stores data. They
claim to be the most flexible database using JSON-like documents. This means
that fields can vary from document to document and data structure can be

9

changed over time. The document model maps to the objects in application code,
making data easy to work with. Ad hoc queries, indexing, and real time
aggregation provide powerful ways to access and analyze the data. MongoDB is
a distributed database at its core, so high availability, horizontal scaling, and
geographic distribution are built into the system and are easy to use. While
MongoDB may be the most popular option, our data will be staying consistent
and we don’t need the ability to have multiple fields in different documents. Table
2 displays the pros and cons for MongoDB.

Table 2 - Pros and Cons of MongoDB

Pros Cons

Speed
Schema-less

Choose level of consistency

Documents can have different fields
Larger Data Size

Less flexible with querying
Only recent support of transactions

4.2.2. Apache Cassandra

Apache Cassandra is a free open-source, NoSQL distributed database. Since
Cassandra is a distributed database, the data can be stored in multiple
computers on a network of interconnected computers. A few of Cassandra’s main
features are offering CQL (Cassandra Query Language) and fault-tolerance.

Apache Cassandra database excels in scalability and high availability without
compromising performance. Apache Cassandra provides lower latency for users
and can survive regional outages. Cassandra Query Language is Apache
Cassandra’s interface alternative to SQL. CQL adds an abstraction layer to hide
implementation details and provides native syntaxes for collections. There is a
CQL driver for Python to make it easier to use and seamlessly connect to other
technologies. Table 3 displays the pros and cons for Apache Cassandra.

Table 3 - Pros and Cons of Apache Cassandra

Pros Cons

SQL like language using CQL
Multi-Data Center replication

Write speed

Unpredictable performance
JVM required to store huge amounts of data

10

4.2.3. Amazon RDS

Amazon RDS is a distributed relational database service by Amazon Web
Services. A few of Amazon RDS’ main features are Multi-Availability Zone (AZ)
Deployment, read replicas, performance metrics and monitoring, and automatic
backups. Amazon RDS has multiple database engines to choose from including
MySQL, MariaDB and Microsoft SQL Server.

Since Amazon RDS can run on MySQL, it has some of the same benefits that
MySQL has to offer. MySQL is an open-source relational database management
system that is developed by the Oracle Corporation. A few of MySQL’s main
features are cross-platform support, full-text searching and indexing, and query
caching. On top of that, Amazon RDS makes it easier to set up, operate, and
scale in the cloud with added benefits of cost-efficiency and resizable capacity
while automating administration tasks such as backups and hardware
provisioning. This makes it so the developers can focus on the applications for
fast performance, high availability, security and compatibility. Table 4 displays the
pros and cons for Amazon RDS.

Table 4 - Pros and Cons of Amazon RDS

Pros Cons

Easy adding/removing replicas
Managed Service

Size limit
Hard to tune

4.3. Chosen approach

Table 5 compares the different chosen database structures described in this section for
different necessary functions including:

11

Table 5 - Database Comparison

Functions MongoDB Apache Cassandra Amazon RDS

Language Support Many(Python) Many(Python) Many(Python)

Query Language NoSQL CQL SQL

Cost/Availability Open Source
Free up to 512MB

Open Source
Requires JVM

Free Tier (1 year)
up to 20GB

Type Document-oriented Distributed Relational

Scaling Horizontal Horizontal Vertical

For this project, we will be using Amazon RDS. We want to stay away from having to pay
for database storage as well as be able to store an unknown amount of data in it. We
chose this solution because it is the most practical and flexible for our needs. It will
connect seamlessly to AWS and it works well with Python. Since our database also has
the possibility of living in the cloud as well as on a computer, we wanted a more
cloud-based platform. We can use Amazon RDS as our cloud database and MySQL for
a local instance.

4.4. Proving feasibility

The way MySQL stores data is in rows. Each new “piece” of data gets stored in a single
row with a key that groups the data together. All new “pieces” of data must have the
same number, type, and title of fields in order to be stored into that database. This is
really helpful for us because all of our data should stay consistent and the fields
shouldn’t vary from data entry to data entry. A working demo would be simply storing our
TLD test data into the database on both MySQL and Amazon RDS. Change the data on
one of them, then try to push data from there onto the other database to see if the new
database changes.

5. GUI

5.1. Overview

Another technical challenge for this project is to choose the appropriate GUI to display
the data. According to the project description, this project is to prototype a modern
cloud-connected GUI for the purpose of evaluating TLD data, so a simple GUI to display
the correct data is necessary. When we communicate with our sponsor, we come to a
consensus that there could be many possibilities or option for the GUIs. It can be any

12

kind of forms such as web app, desktop software, command line or even files that can be
opened and read the data directly. It doesn’t need to be very complicated or fancy, as
long as we can maintain the data integrity and display the correct data only. However,
we still need to find out one GUI among these options that provide an outstanding
readability and simplicity.

Since this project is a web-based prototype, which includes lots of data transportations
on the internet, we will mainly focus on the web app or web framework, which can
display the data in an organized way through our browser. We will also look into the
other kinds of GUIs such as desktop applications (based on different platforms) and
even command line or readable files.

5.2. Alternatives

For the web app, we have some options among some established frameworks based on
different programming language. Preferably, we would like the framework to support the
Python implementation to maintain the consistency of the project. According to the
statistics from “Python's Web Framework Benchmarks” The top 3 popular choices for
web app frameworks are Django, flask and Tornado, and all of them are based on
Python. We will evaluate these three frameworks based on the following criteria:

● Performance (serialization performance, remote performance, and database
performance)

● Functionality
● Simplicity (for the implementation)
● Support Documentation
● Open Source
● Portability

5.2.1. Django

Django is a free and open-source web framework based on Python environment.
It follows the model-view-template (MVT) architectural pattern. It provides a
simple way to develop the complex, database-driven website. Django
emphasizes reusability and pluggability of components, which is actually a very
advanced idea: the components are removable. If you don’t want a component of
the application, you can delete it directly without affecting other components in
the system.

Compared to other frameworks, Django provides a very completed solution. It
has assigned all the component like template, Session, authentication and even
app partition. For example, We can develop a powerful backend with its admin
and Django-suit. It provides as much as functionality, which is very suitable for

13

the development of enterprise level software. And it also has a killer feature, that
is its well-known and powerful data management component. With its ORM
component, a novice can easily access and operate the database without
learning SQL language. It comes with very detail debug information, which is very
easy to find out the error in the code.

However, there are also some disadvantages to this framework. Django includes
too many functional components for a lightweight application, even if they don’t
actually need it. It also has an over-encapsulation problem. Many classes and
methods are encapsulated, which are very easy to use but very difficult to modify.
Also, compared to other platform based on C & C++, the performance of Django
is low. However, that is a common problems for most of the Python-based
frameworks. The flexibility for implementation is just so-so. The Django template
separates the code and style and doesn’t allow Python code to appear in the
template, which may not be sufficient for some programmers.

5.2.2. Flask

Flask is another popular web framework written in Python. Applications
implemented with Flask framework include Pinterest and LinkedIn. Developers
who switched from Django to the Flask will certainly agree with that. It does not
require particular tools or libraries, and it has no database abstraction layer or
any other pre-existing components. However, it supports extensions that can add
application features as if they were implemented in Flask itself. It has a wide
selection of third-party libraries, which is free, flexible and extensible.

Also, it’s easy to get started, even if the developers don’t have much experience
in web development. It's very easy to develop API for web services and also very
suitable to develop a small website. It might be difficult to develop large websites
using this framework, since all the code architecture needs to be re-designed,
which depends on the developer’s ability and experience.

For the data management, Flask is commonly used with MongoDB, which gives it
more control over databases and history. It might not be work with relational
databases as well as Django, but it works much better with NoSQL databases.
For the performance, Flask shows an advantage in local JSON serialization. The
average time for Flask to complete a JSON serialization was 43.33 milliseconds
and 4630 requests per second, which is comparable to Django with 42.52
milliseconds complete time and 4762 requests per second.

14

Fig. 2. Serialization Performance Comparison (JSON encoding)

5.2.3. Tornado
Tornado is a scalable, non-blocking web server and web application framework
written in Python. Like Flask, Tornado also tries to keep the framework simple
and powerful. It only provides some necessary component like URL Router and
very basic database access. It doesn’t encourage the developer to use
templates, but unlike Django, it allows the developers to embed single line python
code in the template, which offers some limit flexibility.

Tornado is noted for its high performance. It tries to solve the C10k problem
affecting other servers, allow them to scale beyond 10,000 connections or clients.
It’s also very good at remote processing performance. According to a
performance test, the average time for Tornado to load and return http response
from a remote serve is only 1.05 seconds, while Flask is 3.34 seconds and
Django is 3.48 seconds. The HTTP response speed of Tornado is three times
faster than Flask and Django. Tornado’s success is due to its inherent
asynchronous nature, while Django and Flask are synchronous frameworks with
limited performance when processing the requests. If taking both the
corresponding HTTP speed and the JSON processing speed showing in 5.2.2
into consideration, which will show the average performance of data processing
through the internet, Tornado takes 1114.48 ms, which is still 3 times faster than
Django (3519.88 ms) and Flask (3387.60 ms).

However, for the database support, it only provides a very basic encapsulation of
MySQL. And due to its single-threaded feature, which means that if the database
query returns too slowly, the entire system response will be blocked. It doesn’t
have a powerful database management system like the ORM in Django, and it

15

doesn’t even support the session. But it also provides an opportunity to improve
the database performance.

Fig. 3. Remote Performance Comparison (HTTP Response)

5.3. Chosen approach

Table 6 compares the frameworks of the different chosen GUIs described in this section
for different necessary functions including:

Table 6 - Framework Comparison

Functions Django Flask Tornado

General Performance Medium Fast Very Fast

Language Python Python Python

Open Source BSD BSD Apache 2.0

Functionality Powerful Limited Medium

Flexibility Limited Very good Good

Simplicity Complex Simple Medium

Portability Good Very Good Limited

Support Documentation Well-supported Medium-supported Medium-supported

Table 7 compares the performance of the different chosen GUIs described in this section
for different necessary functions including:

16

Table 7 - Detailed performance comparison

Functions Django Flask Tornado

Serialization Performance
(JSON)

Fast (4762 pr / 42.52
ms)

Fast (4630 pr /
43.33ms)

Slow (2578 pr /
77.51 ms)

Remote Performance
(HTTP response)

Slow (3.48s) Slow (3.34s) Fast (1.04s)

Database Performance Slow (42.9 pr /
2904.4ms)

Fast (123pr /
1440.24ms)

Fast (143pr /
1344.69ms)

For this project, we will be using Django. It’s the most popular web-app framework in
Python, which means excellent document and community support. It integrated many
powerful functions and components, which will simplify our way to implement this project.
In some key performance indicator like database accessibility, it shows the advantages
compares to other popular frameworks like Flask and Tornado, which is crucial for
business users and also for the data-based project like this.

5.4. Proving feasibility

In order to prove the feasibility of Django, We will create a local sample database with
the ORM model and transfer some sample TLD data into the database. A program
written in Python will evaluate the integrity of those TLD data and eliminate the incorrect
data. Only the correct data will show on the frontend using Template in Django.

6. Protocol

6.1. Overview

To transfer messages over the internet, the message must be associated with a
protocol. There are only two types of transport level protocols and multiple application
level protocols. Application level protocol determine how the two applications will work
with each other while the transport layer protocol determines how those messages get
from point a to point b.

6.2. Alternatives

There are currently two main types of protocols: TCP and UDP. The third protocol that
we will be analyzing is the FAA approved Common Message Handling Protocol (CMHP).

17

6.2.1. TCP

TCP is the most used internet protocol out there because it is more reliable than
UDP. When a packet is sent, there is a destination as well as a source address. If
the receiver does not receive the packet, then the sender re-sends it. These
added headers adds overhead for each router the packet gets to making the total
trip time longer than if you used UDP.

Table 8 - Pros and Cons of TCP

Pros Cons

Reliable
Congestion control

Flow Control

Slow

6.2.2. UDP

UDP is the fastest way to send messages on the internet. The only thing that
UDP requires is a destination IP address. The reason that UDP is the fastest is
because it doesn’t offer any sort of reliability. The sender just sends out the
packets without knowing what is on the network and if the receiver received
those packets.

Table 9 - Pros and Cons of UDP

Pros Cons

Fast Unreliable

6.2.3. CMHP

Common Message Handling Protocol (CMHP) is an application-level protocol
developed by the FAA. It was created because TCP/IP is a fire-and-forget
protocol with no message receipt acknowledgment and little socket management.
CMHP adds functionality that provides message-delivery assurance, regardless
of the number of sockets that are traversed between end-systems. This protocol
sits in the application layer at both the client and server side. CMHP enables the
exchange of application data with assurance that the data sent has been
successfully received and processed by the far-end application.

18

Table 10 - Pros and Cons of CMHP

Pros Cons

Ensures data integrity
FAA Approved

Security

Have to contact organization for source code
or create it ourselves

6.3. Chosen approach

Table 11 compares the different chosen protocols described in this section for different
necessary functions including:

Table 11 - Protocol Comparison

Functions TCP UDP CMHP

Security Secure Least Secure Most Secure

Speed Slowest Fastest Slowest

FAA No No Yes

For our project, we will be using CMHP because it is even more secure than TCP and is
approved by the FAA.

6.4. Proving feasibility

Since CMHP is an application-level protocol, it will work seamlessly with the rest of our
project. All we have to do is add a few lines of code into our source code and CMHP will
work on anything that uses the internet.

7. Integration

In the technology integration, we now need to consider how to connect all the components we
have chosen above in order to fulfill the requirement of this project. For now, we have three
main components in this project, they are:

1. Cloud (Amazon Web Services)
2. Database (Amazon RDS)
3. GUI (Django)

19

And all the data transfer are based on CMHP protocol we use the arrows to represent the
transfer of data between components in the architecture graph below:

Fig. 4. Software Architecture

Since the CMHP protocol will ensure the data integrity during the data transfer process, then we
can assume that the data download to the GUI is the same as in the Cloud. So in this
architecture, all the data flows are unidirectional: from the Cloud(database) to the backend of
the GUI through the CMHP protocol, then display in the front. We still need to evaluate the TLD
data in the GUI so that the incorrect data cannot be displayed.

7.1 Transfer TLD data from the Cloud to the GUI

Since the TLD data are stored on the files, we need to transfer them to the database
(Amazon RDS) in order to process them. We use the backend program written in Python
to connect these two components and finish the transfer process. The database
(Amazon RDS) need to have configurable paths in order to access it. Then we transfer
those data to the GUI through the CMHP protocol, this will ensure the data integrity
during the transfer process and also provide the authentication feature. When the GUI
tries to connect and interact with the Cloud through HTTP requests, the correct
credentials need to be used.

7.2 Evaluate and display the data

After the TLD data have been downloaded to the local GUI, we can evaluate those TLD
data and eliminate the incorrect data. This could be finished within the ORM model in
Django with a backend program written in Python and then display those correct data on
the Frontend Website.

20

8. Conclusion

Our team was faced with four technical challenges, and we had to choose a solution for each
one. To recreate a cloud, we chose to use Amazon Web Services S3 cloud storage services.
For our database, we will be using Amazon RDS as our cloud database and MySQL for a local
instance. Our GUI will be implemented using Django and we will use CMHP our message
transferring protocol.

This document has been the team’s technical feasibility analysis for this project. We have
analyzed the challenges of this project, compared different solutions, and come to a decision on
how we will solve the challenges we are faced with and how these solutions will integrate with
each other for the final product.

Below is a final review of our findings. Table 12 shows the different technical challenges of this
project, their chosen solutions, and the confidence level the team has in each chosen solution.

Table 12 - Chosen Solutions

Technical Challenge Chosen Solution Confidence Level

Cloud Amazon Web Services High

Database Amazon RDS/MySQl High

GUI Django High

Protocol CMHP High

Our next steps will be to being implementing and integrating the solutions we have chosen. Our
chosen cloud solution will allows us to upload TLD test data and later download that data into
our chosen database. We have chosen a GUI that will be both functional and practical for this
project and the chosen protocol will allows us to ensure data integrity while complying to FAA
standards.

21

